
 1

 Protocols and Strategies for Optimizing Performance of Remote
Memory Operations on Clusters

Jarek Nieplocha Vinod Tipparaju Amina Saify Dhabaleswar Panda
Pacific Northwest National Laboratory Ohio State University

The paper describes software architecture for
supporting remote memory operations on clusters
equipped with high-performance networks such as
Myrinet and Giganet/Emulex cLAN. It presents
protocols and strategies that bridge the gap between
user-level API requirements and low-level network-
specific interfaces such as GM and VIA. In particular,
the issues of memory registration, management of
network resources and memory consumption on the
host, are discussed and solved to achieve an efficient
implementation.

1. Introduction
Remote memory operations offer an intermediate
programming model between message passing and
shared memory. This model combines some advantages
of shared memory, such as direct access to shared/global
data, and the message-passing model, namely the
control over locality and data distribution. Certain types
of shared memory applications can be implemented
using this approach. In some other cases, remote
memory operations can be used as a high performance
alternative to message passing. Many of such
applications are characterized by irregular data
structures, dynamic or unpredictable data access
patterns. MPI-2 offers one version of remote memory
operations with two particular flavors: “active” and
“passive target” one-sided communication. Other
versions are found in vendor specific interfaces such as
LAPI on the IBM SP, RDMA on the Hitachi SR-8000,
MPlib on Fujitsu VPP-5000, and in other portable
interfaces such as ARMCI[6] or SHMEM[8].
Differences between these models can be significant in
terms of progress rules and semantics, and they can
affect performance. MPI-2 offers a model closely
aligned with the traditional message passing and
includes high-level concepts such as windows, epochs,
and distinct progress rules for “passive-“ and “active”
“ target” communication. In ARMCI we are focusing on
a low-level interface and simpler progress rules
motivated by the h/w support for remote memory
operations on existing MPP systems. The library is
intended be used as a run-time system for other
programming models such as Global Arrays [18], Co-
Array Fortran [19] or UPC compilers, or even SHMEM-
like library [7,8].
We are interested in exploiting the high-performance
networks and protocols for optimizing remote memory
copy on commodity clusters. The predominant high-

performance network for clusters is Myrinet. Others
include Giganet/Emulex cLAN, Dolphin SCI, or
Quadrics Elan. cLAN network supports the industry
standard Virtual Interface Architecture (VIA) interface,
a protocol closely related and supported on next
generation/emerging InfiniBand networks. VIA, GM,
and Infiniband interfaces offer some support for remote
memory operations. However, an important mismatch
between user level programming interfaces and these
network protocols relates to virtual memory. Neither
Myrinet, nor cLAN, nor Infiniband networks are
integrated with the virtual memory subsystem. The
native remote memory copy on these networks can
address only so called registered memory on both sides
of the data transfer. Memory registration involves
locking pages in physical memory and thus potentially
deprives applications of the benefits of virtual memory.
In addition, the amount of memory that can be
registered/locked is usually limited. In some cases, for
example GM on Solaris, registration of existing memory
segments is not even supported. These constraints have
a profound impact on the implementation strategies of
user-level remote memory interfaces on such networks.
In this paper, we describe software architecture for
supporting remote memory operations on clusters with
networks such as Myrinet or cLAN. When combined
with protocols and strategies for efficient management
of network and host resources, this architecture can both
deliver high performance and match network protocols
with requirements of remote memory operations. The
protocols and strategies address issues such as buffer
memory consumption, management of GM tokens,
dynamic memory registration, zero-copy data transfers
and adaptive data streaming. For example, the adaptive
data streaming technique bridges the performance gap
between remote memory operations that target
registered and those that use regular memory. Our
approach relies on the standard unmodified system
software and drivers for Myrinet and cLAN rather than
on custom/alternative drivers and interfaces (e.g., AM
[1], PM [2], BIP [3], and FM [4]) interfaces that replace
the standard Myrinet Control Program (MCP) on the
network interface card.
The paper makes several contributions to the field. First
it presents a software architecture that supports
efficiently a complete set of remote memory operations
including remote copy, accumulate, locks, and atomic
read-modify-write operations implemented on top of
low-level messaging interfaces such as GM and VIA,
and the standard operating system interfaces. It

 2

addresses critical design issues faced on the commodity
SMP clusters and then describes possible solutions for
matching the low-level network protocol and user-level
programming model requirements. The performance
implications of the design decisions are presented and
analyzed in the context of standalone communication
benchmarks. Finally, the paper offers some indications
on what additional features would be desirable in
network communication APIs to better support remote
memory operations.
The paper is organized as follows. Section 2 discusses
remote memory functionality. Section 3 presents
software infrastructure for implementing
communication based on VIA and GM. Experimental
results are provided and discussed in Section 4, and
conclusions are included in Section 5.

2. Remote memory operations
A minimum set of remote memory operations available
in virtually all portable and vendor specific remote
memory interfaces includes: remote memory copy
(get/put) and synchronization operations. On systems
where remote store operation (put) is nonblocking
and/or the underlying network does not guarantee
ordering (e.g., IBM SP switch), a fence operation is
provided. Specific synchronization operations are
available in remote memory libraries, and they vary
widely. MPI-2 provides locks; Cray SHMEM and
Hitachi RDMA offer atomic swap, Fujitsu MPlib
supports semaphores, while IBM LAPI includes several
flavors of atomic read-modify-write operations. ARMCI
offers a fairly complete superset of these operations,
with interfaces generalized to be portable across variety
of platforms. On many systems with native remote
memory copy including IBM SP, Cray T3E, Fujitsu
VPP-5000, or Hitachi SR-8000, ARMCI is implemented
as a thin layer on top of the native interfaces for the
functionality supported by these interfaces and a thicker
layer for the functionality that is not. In addition to the

MPP systems, the library is available on clusters of
common Unix and Windows workstations/servers.
Compared to the well known Cray SHMEM one-sided
interface [8], ARMCI places more focus on non-
contiguous data transfers that correspond to data
structures in scientific applications (e.g., sections of
multi-dimensional dense or sparse arrays). Such
transfers are optimized, thanks to the non-contiguous
data interfaces available in the ARMCI data transfer
operations: multi-strided and generalized UNIX I/O
vector interfaces. ARMCI supports up to eight stride
levels corresponding to eight-dimensional arrays. The
library provides three classes of operations (Table 1): 1)
data transfer operations including put, get, and
accumulate (operation also available in MPI-2 but not in
any vendor specific remote memory interface); 2)
synchronization operations— atomic read-modify-write,
locks/mutex operations, and 3) operations for memory
management, local and global fence, and error handling.
ARMCI only targets remote memory allocated via the
provided memory allocator routine, ARMCI_Malloc
(similar to MPI_Win_malloc in MPI-2). On shared
memory systems including SMPs, this approach allows
to allocate shared memory for the user data and
consecutively map remote memory operations to direct
memory references, thus achieving sub-microsecond
latency and a full memory bandwidth [9].

3. Software architecture for remote
memory operations on clusters
The most affordable network used in commodity
clusters is Ethernet with TCP/UDP-IP sockets as the
primary communication protocol. This protocol offers
no explicit support for remote memory operations. The
other networks used for cluster computing include
Myrinet, cLAN, Quadrics, and SCI. The native
communication protocols on these networks offer a
variable level of support for remote memory operations
from limited (Myrinet) to extensive (Quadrics). In order

Table 1: Remote memory operations in ARMCI

Operation Description

ARMCI_Put, ARMCI_PutV, ARMCI_PutS contiguous, vector and strided versions of put

ARMCI_Get, ARMCI_GetV, ARMCI_GetS contiguous, vector and strided versions of get

ARMCI_Acc, ARMCI_AccV, ARMCI_AccS contiguous, vector and strided versions of atomic accumulate

ARMCI_Fence blocks until outstanding operations targeting specified process complete

ARMCI_AllFence blocks until all outstanding operations issued by calling process complete

ARMCI_Rmw atomic read-modify-write

ARMCI_Malloc memory allocator, returns array of addresses for memory allocated by all
processes

ARMCI_Free frees memory allocated by ARMCI_Malloc

ARMCI_Lock, ARMCI_Unlock mutex operations

 3

to provide a complete set of remote memory operations,
the missing capabilities need to be implemented using
operating system services and protocols.
In the following subsections, we briefly describe
characteristics of two network protocols, then discuss
communication protocols and strategies developed to
achieve high performance of remote memory operations
and at the same time minimize resource consumption.
We consider clusters with two representative high-
performance networks: Myrinet – for its popularity --
and cLAN for its h/w support for VIA, a protocol
formulated by the PC industry leaders that will also be
offered in the forthcoming Infiniband networks [17].

Target network protocols

GM is a low-level message-passing system for the
Myrinet network [5]. The GM system includes a driver,
the Myrinet-interface control program, a network
mapping program, and the GM API, library, and header
files. GM features include 1) protected, user-level access
to the Myrinet; 2) reliable, ordered delivery of
messages; 3) automatic recovery from transient network
problems; 4) scalability to thousands of nodes; and 5)
low host-CPU utilization. In addition to message
passing, GM supports put operation. However, GM can
only send messages from or receive messages into
registered (DMA-able) memory. GM on Solaris does
not support registration of memory that was allocated as
non-DMA-able in the first place. In earlier versions of
GM, registration of shared memory did not work on
Linux.
Virtual Interface Architecture (VIA) is a high-
performance communication layer for system area
networks (SANs). Its design was strongly influenced by
the academic research on low-overhead communication
as well as experience with MPPs. Due to its widespread
industry support (including Intel, Compaq and
Microsoft) and connection to Infiniband, it is likely that
VIA will become more widely adopted. VIA provides
protected zero-copy data transfer, without requiring
operating system kernel assistance. Both message
passing and remote memory copies are available in VIA.
However, only remote write (put) is mandatory, and for
example on cLAN the optional remote memory read is
not implemented. VIA requires that memory used in all
the communication be registered by the application prior
to communication so that it can be pinned to avoid page
faults on transmission or reception of data.
The two protocols differ in several key respects. VIA is
connection based while GM offers connectionless
approach. When comparing to GM, VIA puts more
responsibility on the user to do flow control. For every
message sent there must always be a buffer available.
GM would attempt to resend messages if the buffer is
not available. For practical purposes, VIA requires at
least one buffer preposted for every other process but it
does not mandate message to match exactly the buffer
size (can be smaller). Under GM, buffers must be posted

for entire range of messages as the message can only be
delivered into a buffer that matches its size, but
messages can be delivered into a buffer from any
process. Neither GM nor VIA offer any support for
remote synchronization/mutual exclusion operations and
both protocols require memory registration. Some of
these limitations can be addressed by layering a heavier-
weight interface over VIA and GM, and they also have a
profound impact on our system design.

Client-server architecture

To support a full set of remote memory operations on
clusters with GM or VIA protocols our strategy relies on
client server architecture. It is implemented by starting
on each machine “server” thread(s) dedicated to
remote-memory operations that are issued by the remote
clients (user tasks). If the implementation of network
protocols is not thread-safe, a heavyweight process can
be used instead. The server thread upon receiving a
request executes a handler function corresponding to the
appropriate remote memory operation and, if needed,
sends data back to the client.
The optimal number of server threads needed depends
on several factors such as the number of processors and
user tasks/processes per node, network throughput and
the communication load and patterns in applications.
For performance reasons on the current networks and
hardware with low number of processors per SMP node,
a single thread is appropriate. However, the number of
threads is also related to the issue of how the memory
used for RMA is allocated. In libraries that offer
specific interfaces for memory allocation such as MPI-2
and ARMCI, one thread could suffice since their
memory allocation operations can allocate shared
memory. Otherwise, one thread for each user process
would be required. As we show in this paper, a
combination of server threads, network protocols and
OS support for mutual exclusion is sufficient to
implement a full set of remote memory operations and
deliver high performance. With that architecture, special
care is required to minimize resource consumption
(memory, network bandwidth, CPU utilization) for the
benefit of applications.
To prevent server thread/process in the absence of one-
sided communication requests from consuming CPU
resources needed by user processes, blocking wait rather

user process
extra thread

Figure 1: Extra threads on SMP cluster

ne
tw

or
k

 4

client server
request

data transfer

registration
put ACK

deregistration

Figure 3: Get operation using dynamic memory
registration with overlapping on client and server

0.1

1

10

100

1000

10000

1 100 10000 1000000

bytes

ba
nd

w
id

th
 [M

B
/s

]

memcpy

GM 1.5

VIA

 Figure 2: Performance of memory registration and copy

than active polling of the network interfaces is
appropriate. Both VIA and GM offer blocking
communication calls that effectively block the calling
thread until an associated communication event occurs.
Although VIA offers both polling and blocking calls for
completing data transfer operations, in the cLAN
implementation their overhead differences are
substantial as blocking calls involve interrupt
processing. Therefore the blocking calls are used if
extensive waiting periods are expected [10].

Memory Consumption

A conservative consumption of memory for internal
buffers is critical for achieving implementation
scalability. This is especially relevant for VIA, where in
the server thread we need to prepost at least one buffer
for every other remote client. The buffer must be as
large as the maximum message that is limited by the
MTU value of approximately 64KB on cLAN. Since the
maximum size of the cLAN network is 128 nodes with
possibly multiple client processes running on each node,
to limit memory consumption we post only one buffer
per every other client process and use auxiliary ACK
message to notify client about availability of the buffer
space. These ACK messages are not needed (are
implicit) for requests such as get that bring the data back
from server. We also use one extra buffer to quickly
alternate it on the list of preposted buffers with the
buffer that contains the current request data. That allows
server to send ACK message to the client as soon as the
new message arrives rather than after the current request
is completed and the buffer becomes free. This improves
performance in the pipelined implementation of put
operations.
Under GM, buffers are not associated with particular
remote client processes and the number of them is
limited by the available receive tokens. Since we need to
post buffers for entire range of expected messages, it is
important to minimize buffer space consumption and
provide sufficient number of buffers to match the
application needs. The goal is to avoid a possibility of
GM dropping and retransmitting messages due to the
insufficient number of buffers available. We allow users
to control the number of buffers for each message range
at compile time to match it with the application
communication patterns. There are two options: 1)
uniform number of buffers per message range, 2) non-
uniform number of buffers per range. For the uniform
option, there are two sub options, which differ from
each other in the number of buffers provided per range
and hence in total memory consumption. The user can
select the option that best matches the application.

Zero-copy data transfers

There are two techniques for addressing the requirement
for registered memory in the network programming
interfaces such as VIA and GM: 1) dynamic memory

registration and deregistration as a part of the data
transfer, and 2) by streaming data via preallocated
registered memory buffers. The third alternative that
requires user data to be placed in registered memory is
not always feasible or desirable as, for example, it
defeats the purpose of virtual memory.
The first technique is potentially more attractive as it
provides zero-copy data transfers and eliminates the
need for data copy present in the second one. However,
it does not always lead to superior performance as the
memory registration operations can be expensive. Figure
2 shows (on log-log scales) performance of memory
registration operations (registration and deregistration
calls combined) in the VIA and GM as compared to the
bandwidth of the memory copy operation on Pentium III
under Linux. The assembly-coded memcpy uses MMX
registers, write combining, and prefetching instructions.
In cLAN VIA and earlier versions of GM, the cost of
deregistration is very small and does not depend on the
number of pages. Under GM 1.4 and 1.5, deregistration
of memory became more expensive and is a function of
the number of memory pages involved.
In zero-copy data transfers, memory must be registered
on both sides. As the cost of registration is not
negligible, we overlap the memory registration on both
sides, see Figure 3. A special acknowledgment flag on
the server side (one for every client process) is used. For
example in get operation, the client sends a request to
the server before registering its memory buffer. After
the registration is complete, client updates the flag by
using a low-level put message (RDMA write in VIA and
gm_directed_send in GM). The server after receiving

 5

the request, first registers its appropriate memory area
and then waits until the flag is set which indicates that
the client is ready to receive data.

Pipelined data streaming

Inspection of results in Figure 2 indicates that zero-copy
protocols would not necessarily be always more
competitive than streaming data through a preallocated
and registered buffer (using memory copies). Even for
VIA, where memory registration is very efficient, for
small and medium requests memory copy is faster.
We also need to consider noncontiguous data transfers,
strided and vector formats, which potentially involve
multiple disjoint areas of memory. Even for large
requests the data involved might reside on many
partially occupied memory pages. Since, neither GM nor
VIA offer memory registration interfaces to register
collection of pages that correspond to disjoint memory
areas, we would need to register pages individually.
This increases the memory registration cost. To address
these issues, we developed a data streaming technique
based on adaptive pipelining. This approach relies on
dividing the data into multiple chunks and exploits
nonblocking communication operations: message send
and receive on VIA and low-level put on GM, to overlap
memory copies on client and sever side with data
transmission. To improve performance for smaller
requests the chunk size is adaptively chosen to
maximize the concurrency between memory copies and
data transmission operations on both sides involved in
the data transfer. There are two versions of data
streaming algorithm: one for put operations and one for
get. They both work for contiguous and noncontiguous
data. The put version is much simpler. It involves two
buffers, one on server and one client side.
The baseline implementation of put requires three
phases, see Figure 4: 1) A copy from the source data to
the registered buffer, represented as ‘COPYS’ phase.

This copy is done in the chunks of the sizes of the
buffer. 2) The actual data transmission phase done by
gm_send_with_callback in GM and Vipl_send in VIA.
The data from the message buffer at client is DMA’ed to
a receive buffer on the server. ‘XMIT’ stands for an
operation performed at the sender NIC to DMA the data
and ‘RECV’ represents receiving the data into a server
buffer. 3) The copy to destination memory location from
the server buffer, represented as the ‘COPYR’ .
In the pipelined version we overlap the ‘XMIT’ and the
‘COPYS” phase as well as the ‘RECV’ and the
‘COPYR’ phase. The pipelined implementation requires
multiple send and receive buffers. Hence the ‘COPYS’
phase is overlapped with the ‘XMIT’ and the ‘COPYR’
phase overlapped with ‘RECV’. Instead of copying one
chunk of data, transmitting it, and then waiting for an
acknowledgement, we maintain a set of send buffers.
Since the ratio of time in the XMIT phase to the time
taken in the COPYS phase is between one and three for
most message sizes, two buffers suffice to efficiently fill
the pipeline. Furthermore, the pipelined version is
modified by rebalancing the size and ordering chunks to
minimize the time needed to inject the data into the
network, and maximize the overlapping.
The implementation of get operation is more complex
than put. In addition to the baseline non-pipelined
protocol, we developed a pipelined data streaming
protocol that adapts to the message size by using
variable packetization/buffer length. We found that the
fixed size of the buffer does not provide optimal
performance across the range of requests. Therefore, it
is chosen at run-time depending on the size of the
message to hide (at least partially) the memory copy
costs for requests as small as 2KB. In get, large data
requests are packetized twice: once to fit them into the
400KB registered buffer that is used for streaming and
second time to divide them into multiple smaller chunks
in order to overlap the memory copy and data

ACK

ACK

COPYR

 RECV

 XMIT

COPYR

 RECV

 XMIT

Client

Client NIC

Server NIC

Server

 COPYS1

COPYR1

 RECV1

 XMIT1

 COPYS2

COPYR2

 RECV2

 XMIT2

ACK1 COPYS1

COPYR1

 RECV1

 XMIT1

 COPYS2

COPYR2

 RECV2

 XMIT2

ACK2
A

 COPYS
ACK

COPYR

 RECV

 XMIT

 COPYS

baseline implementation

pipelined implementation

A
C
K

A
C
K

Figure 4: Baseline and pipelined implementation of put operation

 COPYS

Client

Client NIC

Server NIC

Server

 6

transmission operations in a pipelined fashion. In Figure
5, the major differences between the non-pipelined
(baseline) and pipelined versions of data streaming are
presented. In this case client must prepost buffers for
receiving data from server before sending the request.
Under VIA, the standard message-passing operations of
that interface are used. Under GM, where server uses
direct memory copy and the arrival of packets is
ordered, we simply add a tail stamp at the end of each
chunk to inform the client that a given chunk has
arrived. Furthermore, the packetization algorithm is
modified to select a variable size of chunks as a function
of the request size to optimize the overall performance.
This adaptive approach is effective especially for small
and medium data sizes.

Noncontiguous data transfers
ARMCI attempts to optimize performance of
noncontiguous data transfers. It is done by exploiting the
data structure information in the pipelined data
streaming algorithms and avoiding any additional
memory copies or other overheads.

Locks and read-modify-write

These operations are important for implementing mutual
exclusion in applications that rely on remote memory
operations.
In ARMCI user can allocate a set mutexes variables on
each process and then use lock and unlock operation to
acquire and release a lock. Our approach is based on
maintaining the queue of processes that request a
particular lock on each node. A lock operation involves
sending a request to the server. That request is simply a
control message that identifies the mutex and process on
which the mutex resides. Server inspects the queue for
the specific mutex and if it is free responds to client with
token for that mutex. If lock is not available server adds
the process to the queue and leaves the client blocked
waiting for response. A client releases the mutex by

sending a request to the server and includes the token
for the mutex. Server inspects the queue of waiting
clients and if any is found it sends a message to that
process. This algorithm is similar to one presented in
[13]. In addition, our version is optimized for SMP
clusters. This is accomplished by exposing the mutex
queue to all client processes on the node: 1) placing the
underlying data structures in shared memory and 2) and
updating them using an atomic operation available for
both the client as well as server thread. A mutual
exclusion primitive that works across threads in
processes is used.
The read-modify-write operation (RMW) in ARMCI is
available in two flavors: atomic swap and atomic fetch-
and-increment; both of them work for two data types: int
and long. RMW is implemented similarly to locks.
Client sends a request message that contains the
arguments of the operation to the server. Server executes
the operation on behalf of the requesting process and
sends the result back to the client. In this case too, the
underlying algorithm is SMP aware. Therefore, a client
process can execute RMW for data residing on the SMP
node without server thread involvement. This works
since server and client(s) on the SMP node execute the
same code with embedded mutual exclusion that makes
the overall RMW operation atomic.

Fence operation

Fence operation assures that all outstanding remote
memory operations issued by the calling process are
complete. This is important for example in critical
sections of the code, to assure that changes to protected
data are complete before releasing a mutex. The fence
operation applies only for the remote store operations.
Its implementation is closely connected to the
underlying network and remote memory operation
protocols. Under VIA, we simply wait for
acknowledgments from servers (sent implicitly as a part
of flow control in put operations) when the buffers

Client

Client NIC

Server NIC

 Server

Client Process Issues ARMCI_GetS call

baseline version

pipelined implementation

Issues ARMCI_GetS call

PackREQ

XMT

RCV

PrePost

SCOPY0

PackREQ CCOPY

XMT

XMIT
RECV

RCV

SCOPY0

XMIT

RECV

CCOPY0

SCOPY0

PackREQ CCOPY

XMT

XMIT
RECV

RCV

Client

Server NIC

 Server

Client Process

Client NIC

SCOPY1

XMIT

RECV

CCOPY1

SCOPY2

XMIT

RECV

CCOPY2

Figure 5: Baseline and pipeline implementations of get operation

 7

become available. Under GM, we use a separate request
message that when responded by the server indicates
that the outstanding operations between the client and
this server are completed. In order to reduce cost of this
operation, we issue multiple requests to the servers that
the calling process communicated with since the
previous fence operation, and then wait for responses
from all of them. In order to minimize contention in
cases of multiple processes calling that operation at the
same time we randomize the order requests sent to the
servers.

4. Experimental Results
Our baseline configuration involved dual 1GHz Pentium
III systems running Linux. One cluster used Myrinet–
2000 network with GM 1.5 and the other employed the
cLAN network with driver version 1.3. The MPI
implementations on these systems are MPICH-GM
1.2.1..6 and MVICH 1.0a6.1. The cLAN network is
rated at 125MB/s and Myrinet is rated at 250MB/s.
We used micro-benchmarks to measure performance of
remote memory operations for both contiguous and
strided data types. They rely on timing a series of
calls and averaging the results. Some effort is made to
assure that in repeated calls data is not in the cache. We

developed a closely related benchmark that uses same
data reference patterns on top of MPI send/receive
operations. For strided data, a user defined MPI
datatype is used to define the data layouts. Our MPI
benchmark is different from the traditional ping-pong
tests by not reusing the same buffer and eliminating
caching effects in repeated communication from/to the
same buffer(s). The differences between one-sided
protocols in remote memory operations and two-sided
protocols in MPI send/receive communication are
obvious and one can expect to see some differences in
the performance for these protocols. In our paper,
performance results are presented for both of them to
show how effectively they exploit the network.
First, we discuss performance of contiguous get
operation on cLAN and Myrinet, see Figures 6 and 7.
They compare three protocols described in the previous
section: zero-copy, baseline data streaming, and data
streaming with adaptive pipelining. The results are
closely related to the performance of 1) network, 2)
memory registration and deregistration operations, and
3) memory copy. Since the registration operations in
VIA are very efficient, the zero-copy protocol is most
competitive for all but small messages. This is not the
case on GM, where the zero-copy protocol performs

0

20

40

60

80

100

120

1 10 100 1000 10000 100000 1000000 1000000
0

bytes

ba
nd

w
id

th
[M

B
/s

] baseline

pipeline

zero copy

Figure 6: Performance of zero-copy, data streaming baseline
and pipelined protocols for contiguous data on VIA

0

20

40

60

80

100

120

140

160

180

1 10 100 1000 10000 100000 1000000 1E+07

bytes

ba
nd

w
id

th
 [M

B
/s

]

baseline

pipeline

zero copy

Figure 7:Performance of zero-copy, data streaming baseline
and pipelined protocols for contiguous data on GM

0

20

40

60

80

100

120

140

1 100 10000 1000000

bytes

ba
nd

w
id

th
[M

B
/s

]

get

MPI

put

Figure 9: Performance of ARMCI get and put, and MPI send/receive
operations for strided data on VIA

0

20

40

60

80

100

120

140

1 100 10000 1000000
bytes

ba
nd

w
id

th
[M

B
/s

]

get

MPI

put

Figure 8: Performance of ARMCI get and put, and MPI
send/receive operations for contiguous data on VIA

 8

rather poorly. Overall, the pipelined data streaming
protocol is efficient both on GM and VIA. It is almost
as good as zero-copy protocol on VIA and much better
on GM. Based on these results it is clear that the most
competitive protocol on GM is the pipelined data
streaming, whereas on VIA a hybrid protocol should be
used.
Figures 8-9 present performance of get, put and MPI
send/receive operations on the cLAN VIA. We find get
operation to be close in performance to MPI with
exception for small messages where MPI performs
better. The difference is due to the MPI
implementation (MVICH) using multiple buffers per
virtual interface. This approach minimizes or
sometimes even avoids acknowledgment messages that
occur in ARMCI implementation as a part of flow
control algorithm that aims to minimize the buffer
consumption for scalability reasons. In principle, there
is no reason not to increase the number of buffers for
small processor configurations in ARMCI, but we
decided to leave this secondary (not relevant to larger
configurations) optimization for later. Performance of
the put operation is superior for medium and large
requests.
In case of Myrinet, see Figures 10-11, we observe even
wider performance advantage for the put operation.
Despite targeting a regular unregistered memory and
thanks to effective pipelining, contiguous put is able to
achieve performance within 5% of that for GM alone for
registered memory. The performance gap between
strided and contiguous put operation on GM is much
wider than on VIA. There are two reasons for that: 1)
performance of our memory copy, highly optimized for
Pentium-III, is much better for large contiguous
messages than multiple small segments in strided format
(for data segments larger than 2048 bytes a most
efficient version based is enabled), and 2) the Myrinet-
2000 is a faster network than cLAN and since it
supports much larger messages than cLAN VIA we can
use larger buffers that leads to improvement of the
overall performance for the pipelined put protocol.

Bandwidth of the get operation is also similar to that in
MPI send/receive. In analyzing performance of MPI
(MPICH-GM) we note that it uses a rather controversial
technique of registering user buffers w/o actually
deregistering them after completing the data transfer
[15]. This is important as the cost of memory
deregistration in GM is substantial. We do not feel that
this technique is appropriate, at least in the context of
remote memory operations, since it could lead to
locking most of pages in user application in physical
memory or even application failures due to disabling
virtual memory and shortage of physical memory. For
the put operation on VIA, the limited MTU of ~64KB
on cLAN prevents that operation from achieving higher
performance by employing larger buffers as done on
GM. This limitation could be addressed by employing
multiple buffers but at the cost of substantial increase of
memory consumption as the multiple buffers would
have to be added for each instance of via (remote
process) per SMP node.
When comparing performance of contiguous and non-
contiguous (strided) remote memory copy operations we
find that the gap between them is smaller than under
MPI. However, despite the lack of any additional
memory copies or other overheads for noncontiguous
data, in our case the gap has not been completely
eliminated. In large part, this is due to the nonlinear
performance of the memory copy operation that is
implemented as a combination of three protocols, each
of them enabled for certain data sizes. As the contiguous
segment sizes are much smaller in the strided than
contiguous case, the most efficient copy protocol is only
enabled in strided requests starting at and exceeding
0.5MB. The performance difference in the memory copy
protocols are shown in Figure 2; however, the log-log
scale used in that graph does not fully expose them. Due
to packetization effects in pipelined protocols, even
larger requests usually depend on a combination of
faster and slower memory copy protocols. Switching
between the memory copy protocols is a major factor
responsible for the performance discontinuities

0

50

100

150

200

250

1 10 100 1000 10000 100000 1000000 1E+07
bytes

b
an

d
w

id
th

 [
M

B
/s

] get

MPI

put

Figure 11:Performance of ARMCI get and put, and MPI send/receive
for strided data on GM

0

50

100

150

200

250

1 100 10000 1000000

bytes

b
an

d
w

id
th

 [
M

B
/s

] get

M PI

put

Figure 10:Performance of ARMCI get and put, and MPI
send/receive for contiguous data on GM

 9

 (jaggedness in the graphs) in all our pipelined
protocols.
The latency of remote memory operations (measured as
transfer time for 8-byte data) is presented in Table 2. We
also include performance within the SMP node where
the shared memory protocols are used. The performance
numbers for lock (uncontested mutex) and read-modify-
write operations are similar to the cost of get operation
that includes the cost of interrupt on the remote server
process. The latency of unlock operation on Myrinet and
cLAN only includes the cost to issue a request by the
client as the full cost does not appear on the critical path
and is hard to measure (is lower than for lock).
Figure 12 shows performance improvements due to
concurrent processing in ARMCI_AllFence when called
by a single and all processes in a parallel program. Up to
three, five, and seven outstanding fence requests are
issued to multiple servers before calling process waits
for response. As the amount of processing on servers is
proportional to the number of clients calling the
operation, the improvement is lower for all processes
making the call.

4. Related work
Remote memory copy, a subset of remote memory
operations discussed, has been developed for clusters in
the context of Active Message [1] and Fast Message
[16] projects before. The adaptive data streaming
protocols described in this paper offer an improvement
over the protocols for put and get that were developed in

our previous work in the context of Myrinet-based
clusters [14].
Performance of our implementation of remote memory
copy operations (put/get) can be compared to results
reported in other papers. In [12], performance of MPI-2
put and get operations is presented on a Linux cluster
with cLAN. For example, for time for get operation with
required fence operation (to complete the nonblocking
get call in the MPI-2 active target model) for 1024 bytes
was 262 � S, and for 131072 was 3664.01� S. In our case
the timings for get (ARMCI get is fully blocking thus
fence operation is irrelevant) were 54.8� S and 12800� S.
The performance of ARMCI/GM also can be compared
to the results of the HPVM/FM implementation of
SHMEM [16]. On a dual CPU node with older Myrinet
LANAi 7.3 and under Windows NT, 67MB/s bandwidth
was achieved in shmem_get, and 70 MB/s in
shmem_put. On the same generation of Myrinet the
corresponding numbers for ARMCI under Linux are: 77
MB/s for get and 95 MB/s for put. HPVM exploited 1)
the FM support for one-sided communication on the
NIC (custom MCP) and 2) a dedicated CPU devoted to
active polling rather than blocking like in our approach.
ARMCI approach works with standard GM
communication layer optimized for two sided protocols
and does not require dedicating separate processor for
handling communication [16]. The interrupt processing
in ARMCI is responsible for the latency being two times
higher than in the HPVM approach. However, our
experience with applications [14] does not justify
dedicating a CPU to further reduce the latency.
However, replacing interrupt processing with polling on
a dedicated CPU is straightforward to accomplish in the
described software architecture. In practice, it only
requires replacing blocking receive operation in the
server thread by a polling version of that operation
(available in GM and VIA).

5. Conclusions and Future Plans
This paper describes a software architecture, protocols
and optimization strategies for implementing a full set
of remote memory operations including get, put,
accumulate, locks, fence, and atomic read–modify-write
on SMP clusters that employ Myrinet or VIA-based
networks. They deliver high performance and match
capabilities of network protocols with requirements of
remote memory operations and management efficiently
network and host resources. Limitations of the
underlying network protocols are presented along with
techniques for overcoming them such as the adaptive
pipelined data streaming and dynamic memory
registration. Regarding the capabilities of network
protocols, we found that the requirement for memory
registration is the most significant obstacle to overcome.
It would be useful to have memory registration
interfaces able to handle disjoint memory areas that
occur for noncontiguous data transfers. Implementation
of remote memory operations would be greatly

Table2: Latency of remote memory operations

 SMP Myrinet cLAN

get 0.38� S 35.4 � S 34.6� S

lock 1.1� S 35.6� S 35.2� S

unlock 0.8� S 1.9� S 1.6 � S

RMW 0.8� S 41.3 � S 35.2� S

0

10

20

30

40

50

60

70

80

4 6 7

number of nodes

im
pr

ov
em

en
t [

%
]

3 req/all 5 req/all 7 req/all 3 req 5 req 7 req

Figure 12: Performance improvement in
ARMCI_Allfence for single and all processes calling
the operation

 10

simplified if NIC was able to handle unregistered
memory. Our future plans include development of
nonblocking versions of remote memory operations and
a new fence operation. We will also investigate and
adopt ARMCI for emerging Infiniband networks.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL) and at Ohio State
University. PNNL is operated for DOE by Battelle
Memorial Institute. This work was supported by the
Center for Programming Models for Scalable Parallel
Computing and DoE-2000 ACTS project, both
sponsored by the Mathematical, Information, and
Computational Science Division of DOE’s Office of
Computational and Technology Research. The
Molecular Science Computing Facility at PNNL and
University of Buffalo provided the high-performance
computational resources for this work.

References
1. T. von Eicken, D.E. Culler, S.C. Goldstein, K.E.
Schauser. Active Messages: a Mechanism for
Integrated Communication and Computation. 19th Int.
Symp on Computer Architecture. 1992
2. H. Tezuka, A. Hori, Y. Ishikawa, M. Sato, PM: An
operating system coordinated high performance
communication library,High Performance Computing
and Networking, Springer LNCS 1225, 1997.
3. Loïc Prylli and Bernard Tourancheau. BIP: a new
protocol designed for high performance networking on
Myrinet. In Workshop PC-NOW, IPPS/SPDP98, 1998.
4. S. Parkin, M. Lauria, A. Chien, et. al., High
Performance Virtual Machines (HPVM): Clusters with
Supercomputing APIs and Performance. 8th SIAM
Conf. Parallel Processing for Scientific Computing
(PP97); 1997.
5. Myricom, The GM Message Passing System,
10/16/1999.
6. J. Nieplocha, B. Carpenter, ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems, Proc.
RTSPP IPPS/SDP’99, 1999.
7. K. Parzyszek, J. Nieplocha and R. Kendall, A
Generalized Portable SHMEM Library for High
Performance Computing, Proc PDCS-2000, 2000.
8. R. Bariuso, Allan Knies, SHMEM's User's Guide,
Eagan, MN; Cray Research, Inc., SN-2516, 1994.
9. J. Nieplocha, J. Ju, T.P. Straatsma, A
multiprotocol communication support for the global
address space programming model on the IBM SP,
Proc. EuroPar-2000, Springer Verlag LNCS-1900,
2000.
10. D. Perkovic and P. J. Keleher. Responsiveness
without Interrupts, The 13th International Conference
on Supercomputing, June 1999.

11. J. Hsieh, T. Leng, V. Mashayekhi, R.
Rooholamini, Architectural and Performance
Evaluation of GigaNet and Myrinet Interconnects on
Clusters of Small-Scale SMP Servers, Proc. SC2000.
2000.
12. M. Golebiewski, J. L. Träff. MPI-2 One-sided
Communications on a Giganet SMP Cluster. In Recent
Advances in Parallel Virtual Machine and Message
Passing Interface. 8th European PVM/MPI Users’
Group Meeting, vol 2131 of LNCS, 2001..
13. C. Wagner, F. Mueller, Token-based read/write
locks for distributed mutual exclusion, Proc. EuroPar-
2000, LNCS 1900. 2000.
14. J. Nieplocha, J. Ju, E. Apra, One sided
communication on SMP clusters with Myrinet using
the GM message-passing library, Proc
CAC’01/IPDPS’01, 2001.
15. Myricom, Portable MPI Model Implementation
over GM, ver 1.2.1, (file README-GM), June 23,
2000.
16. L. A. Giannini, A. Chien, A Software Architecture
for Global Address space on communication on
Clusters: Put/Get on Fast Messages, 7th Int. IEEE Symp
on High Performance Distributed Computing, HPDC-
7, 1998.
17. InfiniBand Trade Association. Infiniband trade
association home page. http://www.infinibandta.org.
18. J. Nieplocha, RJ Harrison, and RJ Littlefield,
Global Arrays: A portable `shared-memory'
programming model for distributed memory
computers. Proc. Supercomputing'94, pages 340-349,
1994.
19. R. Numrich, J.K. Reid, Co-Array Fortran for
parallel programming. ACM Fortran Forum, 17(2):1-
31, 1998.
20. W. W. Carlson, J. M. Draper, D. E. Culler, K.
Yelick, E. Brooks, and K. Warren. Introduction to UPC
and language specification. Tech Report CCS-TR-99-
157, Center for Computing Sciences, 1999.

