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The paper describes software architecture for 
supporting remote memory operations on clusters 
equipped with high-performance networks such as 
Myrinet and Giganet/Emulex cLAN. It presents 
protocols and strategies that bridge the gap between 
user-level API requirements and low-level network-
specific interfaces such as GM and VIA. In particular, 
the issues of memory registration, management of 
network resources and  memory consumption on the 
host, are discussed and solved to achieve an efficient 
implementation. 

1. Introduction 
Remote memory operations offer an intermediate 
programming model between message passing and 
shared memory. This model combines some advantages 
of shared memory, such as direct access to shared/global 
data, and the message-passing model, namely the 
control over locality and data distribution. Certain types 
of shared memory applications can be implemented 
using this approach. In some other cases, remote 
memory operations can be used as a high performance 
alternative to message passing. Many of such 
applications are characterized by irregular data 
structures, dynamic or unpredictable data access 
patterns. MPI-2 offers one version of remote memory 
operations with two particular flavors: “active”  and 
“passive target”  one-sided communication. Other 
versions are found in vendor specific interfaces such as 
LAPI on the IBM SP, RDMA on the Hitachi SR-8000, 
MPlib on Fujitsu VPP-5000, and in other portable 
interfaces such as ARMCI[6] or SHMEM[8]. 
Differences between these models can be significant in 
terms of progress rules and semantics, and they can 
affect performance. MPI-2 offers a model closely 
aligned with the traditional message passing and 
includes high-level concepts such as windows, epochs, 
and distinct progress rules for “passive-“  and “active”  
“ target”  communication. In  ARMCI we are focusing on 
a low-level interface and simpler progress rules 
motivated by the h/w support for remote memory 
operations on existing MPP systems. The library is 
intended be used as a run-time system for other 
programming models such as Global Arrays [18], Co-
Array Fortran [19] or UPC compilers, or even SHMEM-
like library [7,8]. 
We are interested in exploiting the high-performance 
networks and protocols for optimizing remote memory 
copy on commodity clusters. The predominant high-

performance network for clusters is Myrinet. Others 
include Giganet/Emulex cLAN, Dolphin SCI, or 
Quadrics Elan. cLAN network supports the industry 
standard Virtual Interface Architecture (VIA) interface, 
a protocol closely related and supported on next 
generation/emerging InfiniBand networks.  VIA, GM, 
and Infiniband interfaces offer some support for remote 
memory operations. However, an important mismatch 
between user level programming interfaces and these 
network protocols relates to virtual memory. Neither 
Myrinet, nor cLAN, nor Infiniband networks are 
integrated with the virtual memory subsystem. The 
native remote memory copy on these networks can 
address only so called registered memory on both sides 
of the data transfer. Memory registration involves 
locking pages in physical memory and thus potentially 
deprives applications of the benefits of virtual memory. 
In addition, the amount of memory that can be 
registered/locked is usually limited. In some cases, for 
example GM on Solaris, registration of existing memory 
segments is not even supported. These constraints have 
a profound impact on the implementation strategies of 
user-level remote memory interfaces on such networks. 
In this paper, we describe software architecture for 
supporting remote memory operations on clusters with 
networks such as Myrinet or cLAN. When combined 
with protocols and strategies for efficient management 
of network and host resources, this architecture can both 
deliver high performance and match network protocols 
with requirements of remote memory operations. The 
protocols and strategies address issues such as buffer 
memory consumption, management of GM tokens, 
dynamic memory registration, zero-copy data transfers 
and adaptive data streaming. For example, the adaptive 
data streaming technique bridges the performance gap 
between remote memory operations that target 
registered and those that use regular memory. Our 
approach relies on the standard unmodified system 
software and drivers for Myrinet and cLAN rather than 
on custom/alternative drivers and interfaces (e.g., AM 
[1], PM [2], BIP [3], and FM [4]) interfaces that replace 
the standard Myrinet Control Program (MCP) on the 
network interface card. 
The paper makes several contributions to the field. First 
it presents a software architecture that supports 
efficiently a complete set of remote memory operations 
including remote copy, accumulate, locks, and atomic 
read-modify-write operations implemented on top of 
low-level messaging interfaces such as GM and VIA, 
and the standard operating system interfaces. It 
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addresses critical design issues faced on the commodity 
SMP clusters and then describes possible solutions for 
matching the low-level network protocol and user-level 
programming model requirements. The performance 
implications of the design decisions are presented and 
analyzed in the context of standalone communication 
benchmarks. Finally, the paper offers some indications 
on what additional features would be desirable in 
network communication APIs to better support remote 
memory operations. 
The paper is organized as follows. Section 2 discusses 
remote memory functionality. Section 3 presents 
software infrastructure for implementing 
communication based on VIA and GM. Experimental 
results are provided and discussed in Section 4, and 
conclusions are included in Section 5. 

2. Remote memory operations 
A minimum set of remote memory operations available 
in virtually all portable and vendor specific remote 
memory interfaces includes: remote memory copy 
(get/put) and synchronization operations. On systems 
where remote store operation (put) is nonblocking 
and/or the underlying network does not guarantee 
ordering (e.g., IBM SP switch), a fence operation is 
provided. Specific synchronization operations are 
available in remote memory libraries, and they vary 
widely. MPI-2 provides locks; Cray SHMEM and 
Hitachi RDMA offer atomic swap, Fujitsu MPlib 
supports semaphores, while IBM LAPI includes several 
flavors of atomic read-modify-write operations. ARMCI 
offers a fairly complete superset of these operations, 
with interfaces generalized to be portable across variety 
of platforms. On many systems with native remote 
memory copy including IBM SP, Cray T3E, Fujitsu 
VPP-5000, or Hitachi SR-8000, ARMCI is implemented 
as a thin layer on top of the native interfaces for the 
functionality supported by these interfaces and a thicker 
layer for the functionality that is not. In addition to the 

MPP systems, the library is available on clusters of 
common Unix and Windows workstations/servers.  
Compared to the well known Cray SHMEM one-sided 
interface [8], ARMCI places more focus on non-
contiguous data transfers that correspond to data 
structures in scientific applications (e.g., sections of 
multi-dimensional dense or sparse arrays). Such 
transfers are optimized, thanks to the non-contiguous 
data interfaces available in the ARMCI data transfer 
operations: multi-strided and generalized UNIX I/O 
vector interfaces. ARMCI supports up to eight stride 
levels corresponding to eight-dimensional arrays. The 
library provides three classes of operations (Table 1): 1) 
data transfer operations including put, get, and 
accumulate (operation also available in MPI-2 but not in 
any vendor specific remote memory interface); 2) 
synchronization operations— atomic read-modify-write, 
locks/mutex operations, and 3) operations for memory 
management, local and global fence, and error handling. 
ARMCI only targets remote memory allocated via the 
provided memory allocator routine, ARMCI_Malloc 
(similar to MPI_Win_malloc in MPI-2). On shared 
memory systems including SMPs, this approach allows 
to allocate shared memory for the user data and 
consecutively map remote memory operations to direct 
memory references, thus achieving sub-microsecond 
latency and a full memory bandwidth [9].  

3. Software architecture for remote 
memory operations on clusters 
The most affordable network used in commodity 
clusters is Ethernet with TCP/UDP-IP sockets as the 
primary communication protocol. This protocol offers 
no explicit support for remote memory operations. The 
other networks used for cluster computing include 
Myrinet, cLAN, Quadrics, and SCI. The native 
communication protocols on these networks offer a 
variable level of support for remote memory operations 
from limited (Myrinet) to extensive  (Quadrics). In order 

Table 1: Remote memory operations in ARMCI 

Operation Description 

ARMCI_Put, ARMCI_PutV, ARMCI_PutS contiguous, vector and strided versions of put 

ARMCI_Get, ARMCI_GetV, ARMCI_GetS contiguous, vector and strided versions of get 

ARMCI_Acc, ARMCI_AccV, ARMCI_AccS contiguous, vector and strided versions of atomic accumulate  

ARMCI_Fence blocks until outstanding operations targeting specified process complete 

ARMCI_AllFence blocks until all outstanding operations issued by calling process complete

ARMCI_Rmw atomic read-modify-write 

ARMCI_Malloc memory allocator, returns array of addresses for memory allocated by all 
processes 

ARMCI_Free frees memory allocated by ARMCI_Malloc 

ARMCI_Lock, ARMCI_Unlock mutex operations 
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to provide a complete set of remote memory operations, 
the missing capabilities need to be implemented using 
operating system services and protocols. 
In the following subsections, we briefly describe 
characteristics of two network protocols, then discuss 
communication protocols and strategies developed to 
achieve high performance of remote memory operations 
and at the same time minimize resource consumption. 
We consider clusters with two representative high-
performance networks: Myrinet – for its popularity -- 
and cLAN for its h/w support for VIA, a protocol 
formulated by the PC industry leaders that will also be 
offered in the forthcoming Infiniband networks [17].  

Target network protocols 

GM is a low-level message-passing system for the 
Myrinet network [5]. The GM system includes a driver, 
the Myrinet-interface control program, a network 
mapping program, and the GM API, library, and header 
files. GM features include 1) protected, user-level access 
to the Myrinet; 2) reliable, ordered delivery of 
messages; 3) automatic recovery from transient network 
problems; 4) scalability to thousands of nodes; and 5) 
low host-CPU utilization. In addition to message 
passing, GM supports put operation. However, GM can 
only send messages from or receive messages into 
registered (DMA-able) memory. GM on Solaris does 
not support registration of memory that was allocated as 
non-DMA-able in the first place. In earlier versions of 
GM, registration of shared memory did not work on 
Linux. 
Virtual Interface Architecture (VIA) is a high-
performance communication layer for system area 
networks (SANs). Its design was strongly influenced by 
the academic research on low-overhead communication 
as well as experience with MPPs. Due to its widespread 
industry support (including Intel, Compaq and 
Microsoft) and connection to Infiniband, it is likely that 
VIA will become more widely adopted. VIA provides 
protected zero-copy data transfer, without requiring 
operating system kernel assistance. Both message 
passing and remote memory copies are available in VIA. 
However, only remote write (put) is mandatory, and for 
example on cLAN the optional remote memory read is 
not implemented. VIA requires that memory used in all 
the communication be registered by the application prior 
to communication so that it can be pinned to avoid page 
faults on transmission or reception of data.  
The two protocols differ in several key respects. VIA is 
connection based while GM offers connectionless 
approach. When comparing to GM, VIA  puts more 
responsibility on the user to do flow control. For every 
message sent there must always be a buffer available. 
GM would attempt to resend messages if the buffer is 
not available. For practical purposes, VIA requires at 
least one buffer preposted for every other process but it 
does not mandate message to match exactly the buffer 
size (can be smaller). Under GM, buffers must be posted 

for entire range of messages as the message can only be 
delivered into a buffer that matches its size, but 
messages can be delivered into a buffer from any 
process. Neither GM nor VIA offer any support for 
remote synchronization/mutual exclusion operations and 
both protocols require memory registration. Some of 
these limitations can be addressed by layering a heavier-
weight interface over VIA and GM, and they also have a 
profound impact on our system design.  

Client-server architecture 

To support a full set of remote memory operations on 
clusters with GM or VIA protocols our strategy relies on 
client server architecture. It is implemented by starting 
on each machine  “server”  thread(s) dedicated to 
remote-memory operations that are issued by the remote 
clients (user tasks). If the implementation of network 
protocols is not thread-safe, a heavyweight process can 
be used instead. The server thread upon receiving a 
request executes a handler function corresponding to the 
appropriate remote memory operation and, if needed, 
sends data back to the client.   
The optimal number of server threads needed depends 
on several factors such as the number of processors and 
user tasks/processes per node, network throughput and 
the communication load and patterns in applications. 
For performance reasons on the current networks and 
hardware with low number of processors per SMP node, 
a single thread is appropriate.  However, the number of 
threads is also related to the issue of how the memory 
used for RMA is  allocated. In libraries that offer 
specific interfaces for memory allocation such as MPI-2 
and ARMCI, one thread could suffice since their 
memory allocation operations can allocate shared 
memory. Otherwise, one thread for each user process 
would be required. As we show in this paper, a 
combination of server threads, network protocols and 
OS support for mutual exclusion is sufficient to 
implement a full set of remote memory operations and 
deliver high performance. With that architecture, special 
care is required to minimize resource consumption 
(memory, network bandwidth, CPU utilization) for the 
benefit of  applications.  
To prevent server thread/process in the absence of one-
sided communication requests from consuming CPU 
resources needed by user processes, blocking wait rather 

user process 
extra thread 

Figure 1: Extra threads on SMP cluster 
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 Figure 2: Performance of memory registration and copy

than active polling of the network interfaces is 
appropriate. Both VIA and GM offer blocking 
communication calls that effectively block the calling 
thread until an associated communication event occurs. 
Although VIA offers both polling and blocking calls for 
completing data transfer operations, in the cLAN 
implementation their overhead differences are 
substantial as blocking calls involve interrupt 
processing. Therefore the blocking calls are used if 
extensive waiting periods are expected [10]. 

Memory Consumption 

A conservative consumption of memory for internal 
buffers is critical for achieving implementation 
scalability. This is especially relevant for VIA, where in 
the server thread we need to prepost at least one buffer 
for every other remote client. The buffer must be as 
large as the maximum message that is limited by the 
MTU value of approximately 64KB on cLAN. Since the 
maximum size of the cLAN network is 128 nodes with 
possibly multiple client processes running on each node, 
to limit memory consumption we post only one buffer 
per every other client process and use auxiliary ACK 
message to notify client about availability of the buffer 
space. These ACK messages are not needed (are 
implicit) for requests such as get that bring the data back 
from server. We also use one extra buffer to quickly 
alternate it on the list of preposted buffers with the 
buffer that contains the current request data. That allows 
server to send ACK message to the client as soon as the 
new message arrives rather than after the current request 
is completed and the buffer becomes free. This improves 
performance in the pipelined implementation of put 
operations. 
Under GM, buffers are not associated with particular 
remote client processes and the number of them is 
limited by the available receive tokens. Since we need to 
post buffers for entire range of expected messages, it is 
important to minimize buffer space consumption and 
provide sufficient number of buffers to match the 
application needs. The goal is to avoid a possibility of 
GM dropping and retransmitting messages due to the 
insufficient number of buffers available. We allow users 
to control the number of buffers for each message range 
at compile time to match it with the application 
communication patterns. There are two options: 1) 
uniform number of buffers per message range, 2) non-
uniform number of buffers per range. For the uniform 
option, there are two sub options, which differ from 
each other in the number of buffers provided per range 
and hence in total memory consumption. The user can 
select the option that best matches the application. 

Zero-copy data transfers  

There are two techniques for addressing the requirement 
for registered memory in the network programming 
interfaces such as VIA and GM: 1) dynamic memory 

registration and deregistration as a part of the data 
transfer, and 2) by streaming data via preallocated 
registered memory buffers. The third alternative that 
requires user data to be placed in registered memory is 
not always feasible or desirable as, for example, it 
defeats the purpose of virtual memory.  
The first technique is potentially more attractive as it 
provides zero-copy data transfers and eliminates the 
need for data copy present in the second one. However, 
it does not always lead to superior performance as the 
memory registration operations can be expensive. Figure 
2 shows (on log-log scales) performance of memory 
registration operations (registration and deregistration 
calls combined) in the VIA and GM as compared to the 
bandwidth of the memory copy operation on Pentium III 
under Linux. The assembly-coded  memcpy uses MMX 
registers, write combining, and prefetching instructions. 
In cLAN VIA and earlier versions of GM, the cost of 
deregistration is very small and does not depend on the 
number of pages. Under GM 1.4 and 1.5, deregistration 
of memory became more expensive and is a function of 
the number of memory pages involved. 
In zero-copy data transfers, memory must be registered 
on both sides. As the cost of registration is not 
negligible, we overlap the memory registration on both 
sides, see Figure 3. A special acknowledgment flag on 
the server side (one for every client process) is used. For 
example in get operation, the client sends a request to 
the server before registering its memory buffer. After 
the registration is complete, client updates the flag by 
using a low-level put message (RDMA write in VIA and 
gm_directed_send in GM).  The server after receiving 
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the request, first registers its appropriate memory area 
and then waits until the flag is set which indicates that 
the client is ready to receive data. 

Pipelined data streaming 

Inspection of results in Figure 2 indicates that zero-copy 
protocols would not necessarily be always more 
competitive than streaming data through a preallocated 
and registered buffer (using memory copies). Even for 
VIA, where memory registration is very efficient, for 
small and medium requests memory copy is faster. 
We also need to consider noncontiguous data transfers, 
strided and vector formats, which potentially involve 
multiple disjoint areas of memory. Even for large 
requests the data involved might reside on many 
partially occupied memory pages. Since, neither GM nor 
VIA offer memory registration interfaces to register 
collection of pages that correspond to disjoint memory 
areas, we would need to register pages individually. 
This increases the memory registration cost. To address 
these issues, we developed a data streaming technique 
based on adaptive pipelining. This approach relies on 
dividing the data into multiple chunks and exploits 
nonblocking communication operations: message send 
and receive on VIA and low-level put on GM, to overlap 
memory copies on client and sever side  with data 
transmission.  To improve performance for smaller 
requests the chunk size is adaptively chosen to 
maximize the concurrency between memory copies and 
data transmission operations on both sides involved in 
the data transfer. There are two versions of data 
streaming algorithm: one for put operations and one for 
get. They both work for contiguous and noncontiguous 
data. The put version is much simpler. It involves two 
buffers, one on server and one client side. 
The baseline implementation of put  requires three 
phases, see Figure 4: 1) A copy from the source data to 
the registered buffer,  represented as ‘COPYS’ phase. 

This copy is done in the chunks of the sizes of the  
buffer. 2) The actual data transmission phase done by 
gm_send_with_callback in GM and Vipl_send in VIA. 
The data from the message buffer at client is DMA’ed to 
a receive buffer on the server. ‘XMIT’  stands for an 
operation performed at the sender NIC to DMA the data 
and ‘RECV’ represents receiving the data into a server 
buffer. 3) The copy to destination memory location from 
the server buffer, represented as the ‘COPYR’ . 
In the pipelined version we overlap the ‘XMIT’  and the 
‘COPYS” phase as well as the ‘RECV’ and the 
‘COPYR’  phase. The pipelined implementation requires 
multiple send and receive buffers. Hence the ‘COPYS’  
phase is overlapped with the ‘XMIT’  and the ‘COPYR’  
phase overlapped with ‘RECV’. Instead of copying one 
chunk of data, transmitting it, and then waiting for an 
acknowledgement, we maintain a set of send buffers. 
Since the ratio of time in the XMIT phase to the time 
taken in the COPYS phase is between one and three for 
most message sizes, two buffers suffice to efficiently fill 
the pipeline.  Furthermore, the pipelined version is 
modified by rebalancing the size and ordering chunks to 
minimize the time needed to inject the data into the 
network, and maximize the overlapping.   
The implementation of get operation is more complex 
than put. In addition to the baseline non-pipelined 
protocol, we developed a pipelined data streaming 
protocol that adapts to the message size by using 
variable packetization/buffer length. We found that the 
fixed size of the buffer does not provide optimal 
performance across the range of requests. Therefore, it 
is chosen at run-time depending on the size of the 
message to hide (at least partially) the memory copy 
costs for requests as small as 2KB. In get, large data 
requests are packetized twice: once to fit them into the 
400KB registered buffer that is used for streaming and 
second time to divide them into multiple smaller chunks 
in order to overlap the memory copy  and data 
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transmission operations in a pipelined fashion. In Figure 
5, the major differences between the non-pipelined 
(baseline) and pipelined versions of data streaming are 
presented. In this case client must prepost buffers for 
receiving data from server before sending the request. 
Under VIA, the standard message-passing operations of 
that interface are used. Under GM, where server uses 
direct memory copy and the arrival of packets is 
ordered, we simply add a tail stamp at the end of each 
chunk to inform the client that a given chunk has 
arrived. Furthermore, the packetization algorithm is 
modified to select a variable size of chunks as a function 
of the request size to optimize the overall performance. 
This adaptive approach is effective especially for small 
and medium data sizes. 

Noncontiguous data transfers 
ARMCI attempts to optimize performance of  
noncontiguous data transfers. It is done by exploiting the 
data structure information in the pipelined data 
streaming algorithms and avoiding any additional 
memory copies or other overheads.  

Locks and read-modify-write 

These operations are important for implementing mutual 
exclusion in applications that rely on remote memory 
operations.  
In ARMCI user can allocate a set mutexes variables on 
each process and then use lock and unlock operation to 
acquire and release a lock. Our approach is based on 
maintaining the queue of processes that request a 
particular lock on each node. A lock operation involves 
sending a request to the server. That request is simply a 
control message that identifies the mutex and process on 
which the mutex resides. Server inspects the queue for 
the specific mutex and if it is free responds to client with 
token for that mutex. If lock is not available server adds 
the process to the queue and leaves the client blocked 
waiting for response. A client  releases the mutex by 

sending a request to the server and includes the token 
for the mutex. Server inspects the queue of waiting 
clients and if any is found it sends  a message to that 
process. This algorithm is similar to one presented in 
[13]. In addition, our version is optimized for SMP 
clusters. This is accomplished by exposing the mutex 
queue to all client processes on the node: 1) placing the 
underlying data structures in shared memory and 2) and 
updating them using an atomic operation available for 
both the client as well as server thread. A mutual 
exclusion primitive that works across threads in 
processes is used. 
The read-modify-write operation  (RMW) in ARMCI is 
available in two flavors: atomic swap and atomic fetch-
and-increment; both of them work for two data types: int 
and long. RMW is implemented similarly to locks. 
Client sends a request message that contains the 
arguments of the operation to the server. Server executes 
the operation on behalf of the requesting process and 
sends the result back to the client. In this case too, the 
underlying algorithm is SMP aware. Therefore, a client 
process can execute RMW  for data residing on the SMP 
node without server thread involvement. This works 
since server and client(s) on the SMP node execute the 
same code with embedded mutual exclusion that makes 
the overall RMW operation atomic.  

Fence operation 

Fence operation assures that all outstanding remote 
memory operations issued by the calling process are 
complete. This is important for example in critical 
sections of the code, to assure that changes to protected 
data are complete before releasing a mutex. The fence 
operation applies only for the remote store operations. 
Its implementation is closely connected to the 
underlying network and remote memory operation 
protocols. Under VIA, we simply wait for 
acknowledgments from servers (sent implicitly as a part 
of flow control in put operations) when the buffers 
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become available. Under GM, we use a separate request 
message that when responded by the server indicates 
that the outstanding operations between the client and 
this server are completed. In order to reduce cost of this 
operation, we issue multiple requests to the servers that 
the calling process communicated with since the 
previous fence operation, and then wait for responses 
from all of them. In order to minimize contention in 
cases of multiple processes calling that operation at the 
same time we randomize the order requests sent to the 
servers.  

4. Experimental Results 
Our baseline configuration involved dual 1GHz Pentium 
III systems running Linux. One cluster used Myrinet–
2000 network with GM 1.5 and the other employed the  
cLAN network with driver version 1.3. The MPI 
implementations on these systems are MPICH-GM 
1.2.1..6 and MVICH 1.0a6.1. The cLAN network is 
rated at 125MB/s and Myrinet is rated at 250MB/s. 
We used micro-benchmarks to measure performance of 
remote memory operations for both contiguous and 
strided data types.  They rely on timing a series of  
calls and averaging the results. Some effort is made to 
assure that in repeated calls data is not in the cache. We 

developed a closely related benchmark that uses same 
data reference patterns on top of MPI send/receive 
operations. For strided data, a user defined MPI 
datatype is used to define the data layouts. Our MPI 
benchmark is different from the traditional ping-pong 
tests by not reusing the same buffer and eliminating 
caching effects in repeated communication from/to the 
same buffer(s). The differences between one-sided 
protocols in remote memory operations and two-sided 
protocols in MPI send/receive communication are 
obvious and one can expect to see some differences in 
the performance for these protocols. In our paper, 
performance results are presented for both of them to 
show how effectively they exploit the network. 
First, we discuss performance of contiguous get 
operation on cLAN and Myrinet, see Figures 6 and 7. 
They compare three protocols described in the previous 
section: zero-copy, baseline data streaming, and data 
streaming with adaptive pipelining. The results are 
closely related to the performance of 1) network, 2) 
memory registration and deregistration operations, and 
3) memory copy. Since the registration operations in 
VIA are very efficient, the zero-copy protocol is most 
competitive for all but small messages. This is not the 
case on GM, where the zero-copy protocol performs 
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rather poorly. Overall, the pipelined data streaming 
protocol is efficient both on GM and VIA. It is almost 
as good as zero-copy protocol on VIA and much better 
on GM. Based on these results it is clear that the most 
competitive protocol on GM is the pipelined data 
streaming, whereas on VIA a hybrid protocol should be 
used. 
Figures 8-9 present performance of get, put and MPI 
send/receive operations on the cLAN VIA. We find get 
operation to be close in performance to MPI with 
exception for small messages where MPI performs 
better.  The difference is due to the MPI 
implementation (MVICH) using multiple buffers per 
virtual interface. This approach minimizes or 
sometimes even avoids acknowledgment messages that 
occur in ARMCI implementation as a part of flow 
control algorithm that aims to minimize the buffer 
consumption for scalability reasons. In principle, there 
is no reason not to increase the number of buffers for 
small processor configurations in ARMCI, but we 
decided to leave this secondary (not relevant to larger 
configurations) optimization for later. Performance of 
the put operation is superior for medium and large 
requests. 
In case of Myrinet, see Figures 10-11, we observe even 
wider performance advantage for the put operation. 
Despite targeting a regular unregistered memory and 
thanks to effective pipelining, contiguous put is able to 
achieve performance within 5% of that for GM alone for 
registered memory. The performance gap between 
strided and contiguous put operation on GM is much 
wider than on VIA. There are two reasons for that: 1) 
performance of our memory copy, highly optimized for 
Pentium-III, is much better for large contiguous 
messages than multiple small segments in strided format 
(for data segments larger than 2048 bytes a most 
efficient version based is enabled), and 2) the Myrinet-
2000 is a faster network than cLAN and since it 
supports much larger messages than cLAN VIA we can 
use larger buffers that leads to improvement of the 
overall performance for the pipelined put protocol.  

Bandwidth of the get operation is also similar to that in 
MPI send/receive. In analyzing performance of MPI 
(MPICH-GM) we note that it uses a rather controversial 
technique of registering user buffers w/o actually 
deregistering them after completing the data transfer 
[15]. This is important as the cost of memory 
deregistration in GM is substantial. We do not feel that 
this technique is appropriate, at least in the context of 
remote memory operations, since it could lead to 
locking most of pages in user application in physical 
memory or even application failures due to disabling 
virtual memory and shortage of physical memory. For 
the put operation on VIA, the limited MTU of ~64KB 
on cLAN prevents that operation from achieving higher 
performance by employing larger buffers as done on 
GM. This limitation could be addressed by employing 
multiple buffers but at the cost of substantial increase of 
memory consumption as the multiple buffers would 
have to be added for each instance of via (remote 
process) per SMP node. 
When comparing performance of contiguous and non-
contiguous (strided) remote memory copy operations we 
find that the gap between them is smaller than under 
MPI. However, despite the lack of any additional 
memory copies or other overheads for noncontiguous 
data, in our case the gap has not been completely 
eliminated. In large part, this is due to the nonlinear 
performance of the memory copy operation that is 
implemented as a combination of three protocols, each 
of them enabled for certain data sizes. As the contiguous 
segment sizes are much smaller in the strided than 
contiguous case, the most efficient copy protocol is only 
enabled in strided requests starting at and exceeding 
0.5MB. The performance difference in the memory copy 
protocols are shown in Figure 2; however, the log-log 
scale used in that graph does not fully expose them. Due 
to packetization effects in pipelined protocols, even 
larger requests usually depend on a combination of 
faster and slower memory copy protocols. Switching 
between the memory copy protocols is a major factor 
responsible for the performance discontinuities  
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 (jaggedness in the graphs) in all our pipelined 
protocols.  
The latency of remote memory operations (measured as 
transfer time for 8-byte data) is presented in Table 2. We 
also include performance within the SMP node where 
the shared memory protocols are used. The performance  
numbers for lock (uncontested mutex) and read-modify-
write operations are similar to the cost of get operation 
that includes the cost of interrupt on the remote server 
process. The latency of unlock operation on Myrinet and 
cLAN only includes the cost to issue a request by the 
client as the full cost does not appear on the critical path 
and is hard to measure (is lower than for lock).  
Figure 12 shows performance improvements due to 
concurrent processing in ARMCI_AllFence when called 
by a single and all processes in a parallel program. Up to 
three, five, and seven outstanding fence requests are 
issued to multiple servers before calling process waits 
for response. As the amount of processing on servers is 
proportional to the number of clients calling the 
operation, the improvement is lower for all processes 
making the call. 

4. Related work 
Remote memory copy, a subset of remote memory 
operations discussed, has been developed for clusters in 
the context of Active Message [1] and Fast Message 
[16] projects before. The adaptive data streaming 
protocols described in this paper offer an improvement 
over the protocols for put and get that were developed in 

our previous work in the context of Myrinet-based 
clusters [14]. 
Performance of our implementation of remote memory 
copy operations (put/get) can be compared to results 
reported in other papers. In [12], performance of MPI-2 
put and get operations is presented on a Linux cluster 
with cLAN. For example, for time for get operation with 
required fence operation (to complete the nonblocking 
get call in the MPI-2 active target model) for 1024 bytes 
was 262 � S, and for 131072 was 3664.01� S. In our case 
the timings for get (ARMCI get is fully blocking thus 
fence operation is irrelevant) were 54.8� S and 12800� S.  
The performance of ARMCI/GM also can be compared 
to the results of the HPVM/FM implementation of 
SHMEM [16]. On a dual CPU node with older Myrinet 
LANAi 7.3 and under Windows NT, 67MB/s bandwidth 
was achieved in shmem_get, and 70 MB/s in 
shmem_put. On the same generation of Myrinet the 
corresponding numbers for ARMCI under Linux are: 77 
MB/s for get and 95 MB/s for put. HPVM exploited 1) 
the FM support for one-sided communication on the 
NIC (custom MCP) and 2) a dedicated CPU devoted to 
active polling rather than blocking like in our approach.  
ARMCI approach works with standard GM 
communication layer optimized for two sided protocols 
and does not require dedicating separate processor for 
handling communication [16]. The interrupt processing 
in ARMCI is responsible for the latency being two times 
higher than in the HPVM approach. However, our 
experience with applications [14] does not justify 
dedicating a CPU to further reduce the latency. 
However, replacing interrupt processing with polling on 
a dedicated CPU is straightforward to accomplish in the 
described software architecture. In practice, it only 
requires replacing blocking receive operation in the 
server thread by a polling version of that operation 
(available in GM and VIA).  

5. Conclusions and Future Plans 
This paper describes a software architecture, protocols 
and optimization strategies for implementing a full set 
of remote memory operations including get, put, 
accumulate, locks, fence, and atomic read–modify-write 
on SMP clusters that employ Myrinet or VIA-based 
networks. They deliver high performance and match 
capabilities of network protocols with requirements of 
remote memory operations and management efficiently 
network and host resources. Limitations of the 
underlying network protocols are presented along with 
techniques for overcoming them such as the adaptive 
pipelined data streaming and dynamic memory 
registration. Regarding the capabilities of network 
protocols, we found that the requirement for memory 
registration is the most significant obstacle to overcome. 
It would be useful to have memory registration 
interfaces able to handle disjoint memory areas that 
occur for noncontiguous data transfers. Implementation 
of remote memory operations would be greatly 

Table2: Latency of remote memory operations 

 SMP Myrinet cLAN 

get 0.38� S 35.4 � S 34.6� S 

lock 1.1� S 35.6� S 35.2� S 

unlock 0.8� S 1.9� S 1.6 � S 

RMW 0.8� S 41.3 � S 35.2� S 
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simplified if NIC was able to handle unregistered 
memory.  Our future plans include development of 
nonblocking versions of remote memory operations and 
a new fence operation. We will also investigate and 
adopt ARMCI for emerging Infiniband networks.  
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